STATE OF VAPOR — GAS BUBBLES IN THE ARTERIES
OF LOW-TEMPERATURE HEAT PIPES
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Investigations into the behavior of vapor—gas bubbles in artery channels have been conducted to
analyze the capabilities of low-temperature increased-power heat pipes. A method for removing
the bubbles from the artery system is suggested and experimentally confirmed.

The working liquids of low-temperature heat pipes have very fair thermophysical properties. The hydro-
dynamic pressure losses in the liquid usually dominate in the total pressure drop along the liquid—vapor—liquid
circuit. Therefore, it is an important task in increasing the heat transfer for such pipes to develop a high-
efficiency capillary structure which, on the one hand, would have a large capillary head, and on the other hand,
low resistance to condensate flow, The perfect solution to this problem would be arterial capillary systems in
which these two factors are not interdependent.

Low-temperature arterial heat pipes have already found use in the space research field [1-3], where the
absence of gravity facilitates the process of filling the arteries with liquid. However, wide use of these capil-
lary systems is limited by a number of difficulties, which have not as yet been finally resolved. The main
problem is the matter of continuously filling the arteries with liquid heat-transfer agent, and the associated
problem of removing (or dissolving) vapor—gas bubbles [4, 5], as well as the matter of stable operation of
heat pipes with this type of capillary system [6].

1, Theoretical Analysis of the Equations of State for Vapor—Gas Bubbles. Vapor—gas bubbles can form
when the wick is being filled with condensate, and also during startup and operation of heat pipes, The mech-
anism for formation of bubbles, arising during the filling of the wick with heat transfer agent, has been des-
cribed in [7]. In gas-filled pipes, bubbles can also be formed during operation of the pipe because of desorp-
tion, boiling or oscillations of the vapor-gas front in the condenser [6, 8, 9]; i.e., even though the artery
filling process has not generated bubbles, the introduction of noncondensible gas into the tube may cause a drop
in its heat transfer. Experimental proof of this phenomenon was presented in [8].

We require to find the main criteria governing the behavior of vapor—gas bubbles. In the analysis it is
desirable to use the same principles which were used by the author of [10] in determining the criteria for boil-
ing on a surface. The size of the bubble, the concentration of gas in the bubble, the temperature superheat,
and also the gravitational and circulatory pressure drops in the heat pipe determine the growth, equilibrium
or collapse of a bubble. The mechanical equilibrium equation at the vapor —liquid interface in the bubble has
the form

P+ P =P+ AP, @)
The partial vapor pressure in the bubble is given by the relation
P, =P AP, 2)

where APj is the excess vapor pressure due to the temperature superheat ATp of the liquid surrounding the
bubble, and also to the gravitational and circulatory pressure drop

AP, = AP, + AP+ AP, ()

The sum of the gravitational and circulatory pressure drops can be expressed in terms of the effective
radius Ref of curvature of the meniscus at the interphase boundary in the artery-vapor channel:

AP, - AP, = . )
Ret
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Fig. 1, The forces acting on a vapor—gas bubble as a
function of the radius R.

Fig. 2. The temperature dependence of the function
¢(T) for the heat-transfer agents Freon 14 and Freon22,
The quantity T/T¢p is the relative temperature,

The pressure drop due to overheat can be approximated by the expression

AP, = (_‘;%) AT, )

<8

Thus, the excess vapor pressure can be represented in the form

ap
AP, = 2 (—— AT,
Rei aT >s s (6)

By introducing the excess pressure of the vapor—gas mixture
Py=AP, + P, (7
Eq. (1) for the mechanical equilibrium can be written in the form
AP; = AP,. C)

The state of a spherical vapor—gas bubble is given by the Clapeyron— Mendeleev equation

Pgas = b//R:;’ (9)
where
3R
b= gl 0)
Taking into account the last relations, Eq. (8) takes the form
b 20
Mt TR an

If the excess vapor pressure AP; = 0, the last equation has the unique solution R = Ry, which describes a stable
state of the bubble. A bubble formed during charging has a stable form. If AP; > 0, Eq, (11) has two solutions
in a specific range of the quantities b and APj: R; and R, (Fig. 1), where Ry corresponds to a stable bubble, and
R, to an unstable equilibrium of the bubble, Thus, all vapor—gas bubbles with radius R < R, have a stable
shape R =Ry, and for R > R, there will be unlimited growth, When there is no gas in the bubble Eq. (11) has

the simpler form

AP, = 9/R (12)

and there is unique unstable solution: Ry = 20/APj; thenall the vaporbubbles with radius less than the critical
value R < Ry will collapse, while bubbles with radius R > Ry will grow without limit.
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The solution to Eq. (12) can be written in the form

(0P/3T),

R/Ri=2/{14
of Re {1+ o/Rer

AT,,) ) (13)
In the absence of temperature overheat of the liquid Ry = 2Ref, i.e., the critical curvature of the bubble is the
curvature of the interphase artery-vapor channel surface. For low-temperature heat pipes, operating, as a

rule, in the increased pressure region, the derivative (dP/dT)g is large, and therefore, even small overheats
lead to a considerable variation in the critical radius.

The solutions of Eq, (11) are determined-by the excess vapor presé“'ﬁ’;'e AP and the value of b, which, in
turn, depend on the amount of gas m in the bubble, One must consider the influence of each of these factors.
With increase in APj the curve P; of excess pressure of the vapor —gas mixture rises upwards, and the solu-
tions R; and R, become close, while R, increases and Ry decreases, Thus, with increase of AP; the growth in
the amount of gas in the bubble corresponds to a rise in the curve of P; and has the same consequences as in
the previous case. Finally, one must consider the case of degeneracy of the two solutions into one: R = R,
which corresponds to tangency of the hyperbola and can be determined from the system

* b* 20 3b* 14
APi-}-EZ_F*-,m:l. (14)

From the last equation of the system, which describes equality of the derivatives at the point of tangency

of the hyperbola, it follows that

B w172
R*=(9R mT*) , (15)

8 o

i.e., Rx, being the upper limit of the parameter Ry, describing a stable state of the bubble, and the lower limit
of the parameter R,, describing an unstable state, is determined by the amount of gas, the temperature, and
the surface tension coefficient, The parameter R+ depends on the type of heat-transfer agent, via the latter
parameter,

By solving the system of equations (14), one can obtain an equation determining the relationship between
the critical parameters:

{ 81R T*m*\'7*, px _
\1287% o° ) AP =1. (16)
By introducing the function
R Tm \'/2
F(m, AP,, T).— (%8}%_0?) AP, amn

one can determine the state of the bubble —liquid system from the value of this function,

F > 1, There is no solution to Eq. (11), an existing vapor—gas bubble is unstable, and there is unbounded
growth; drying out of the arteries is unavoidable.

F =1, There is a unique solution of the system, corresponding to an equilibrium state. Drying of the
artery occurs if there is a deviation from the equilibrium state in the direction R > R,.

0 < F <1, There are two solutions of the equation: The first corresponds to a stable state of the system,
and the second to an unstable state. A vapor—gas bubble is in the artery in a stable state R = Ry, and the artery
dries out for an increase in the bubble size R > R,.

F =0, m =0, There is a unique solution corresponding to a stable state of the system, A deviation of
the bubble size from the design value does not cause drying out of the artery,

F=0, m=0, AP; > 0, The unique solution of Eq, (11) corresponds to an unstable state of the system.,
If the gas bubble deviates from equilibrium, the artery collapses or dries out.

F=0, m=0, APj = 0. There is no solution of Eq. (11). A vapor bubble formed during filling of the
artery collapses independently of its size.

From Eq. (16), knowing the relation o(T), we can determine the temperature dependence of the product
(m*)l/zAP‘i‘. For example, for Freon 14 [11] we have
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c:B(l———TT—jlm. 18)

cr
A similar relation exists for Freon 22, and it differs only in the value of the coefficient B,

According to Eq. (16),

() PAPF ~ o* (T (19)
or, allowing for Eq. (18),
. %\ 1,8/ T 1/2
(m*)! 2AP ~ (1 ~—TI—) (%{«) =@ (T%). (20)
N I

Thus, the temperature dependence of the product (mﬁl/ 2 x AP’{‘ for the heat-transfer agents F-14 and
F-22 is described by the function ¢ (Fig. 2), and the latter decreases with increase in temperature. If there
is no overheat of the liquid (ATp = 0), from Egs. (6) and (16) we can obtain

81 RT*m ] 172

—_— 1
. 128 no @1)

R =
From the last equation it is easy to determine conditions where bubbles with a known mass of gas cause drying
of the capillary system.

Thus, the behavior of bubbles in heat pipe arteries can be represented as follows. Vapor—gas bubbles
formed during filling of an artery lead to a slow drying out of the system, if their size exceeds a quantity R,,
which is determined for each heat-transfer agent by the temperature, the excess pressure of the vapor—gas
mixture, and the mass of gas enclosed in the bubble. If AP; = 0, then R, = «, In the opposite case, where
R <R,, vapor—gas bubbles come to a stable equilibrium state under the influence of surface tension forces:
Subsequent behavior of a bubble is determined by the dynamics of diffusion processes of solution of the gas and
the operating conditions. With an increase in the excess vapor pressure R = Ry, due, e.g., to an increase in
power or to a change in the slope of the pipe, bubbles with the least mass of gas grow, come close to the criti-
cal state APj, and when they reach this the force equilibrium is perturbed and drying of the arteries occurs.
The relationship between the critical parameters is determined by the equality F =1,

2. Methods of Increasing the Capabilities of Arterial Heat Pipes. From the foregoing, it follows that
the influence of vapor —gas bubbles shows up, in the best case, in an increase to hydraulic resistance, and in
the worst case, in drying out of the arterial system. Vapor bubbles can be condensed if there is a drop in fem-
perature or a decrease in the excess vapor pressure R« A drop in temperature corresponds to a growth in the
surface tension coefficient, and therefore, in the forces which tend to condense the vapor bubble., A decrease
in the excess pressure can be effectively achieved by supercooling of the arterial liquid. In order to decrease
the influence of vapor—gas bubbles, the authors of [6] used a supercooling effect and also perforated disks that
inhibit the generation of bubbles in the most hazardous section, the evaporation zone.

In gas-filled heat pipes the process of bubble collapse is determined not by condensation of the vapor,
but solution of the gas. The dynamics of solution are described by processes of saturation of the liquid with
gas in the condenser and diffusion of gas from the liquid to the vapor channel, While the collapse of vapor bub-
bles can be accomplished in a short time, solution of vapor—gas bubbles is quite a slow process. Therefore,
it is desirable to remove vapor—gas bubbles during filling of the arteries with liquid. An adaptation to allow a
high-grade filling is suggested in [4], consisting of the use of a perforated foil from which the artery is filled
in a certain section (usually in the evaporation zone). A bubble present in the artery is separated from the
vapor channel by liquid, filling the perforation (Fig. 3). For a certain ratio between the aperture diameter and
the foil thickness the liquid menisci are tangential; i.e., the aperture is open and the vapor—gas mixture is
drawn into the vapor channel., For successful use of this adaptation, one requires that the foil thickness is
less than the perforation diameter, i.e., it is measured in microns for a wick with a high capillary head. In
the heat pipes mounted on the communication satellife CS-1, a foil of thickness 15 um was used. However, a
thin foil istheleast robust element in the construction of heat pipes. In addition, the meniscus at the rim of
the apertures can change its shape, which does not eliminate the possibility of blocking the perforations with
liquid even for low thickness.

We have proposed the following method for removing bubbles: prepare the arteries with perforated screens
and freeze the heat pipe after filling the arteries with condensate. The freezing of the pipe leads to vaporiza-
tion of the liquid from the perforations above the vapor—gas bubbles. Thus, a path is opened for drawing the
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Fig. 3 Fig. 4

Fig. 3. Closing of a vapor—gas mixture under a perforated screen:
1) vapor channel; 2) bubble; 3) screen; 4) liquid; 5) wall,

Fig. 4. Test section to determine the freezing required to remove a
vapor —gas bubble: 1) chamber with liquid nitrogen; 2) glass cylinder;
3) thermocouple jacket; 4) perforated screen; 5) grid; 6) vapor—gas
bubble; 7) working liquid; 8) lid; 9) vacuum line,

vapor —gas mixture into the vapor channel. By using this method for removing bubbles, the screen thickness
can be quite large. We must explain the influence of various parameters on the freezing of the heat pipe.

Let a vapor—gas bubble of diameter 2R be in the gap between the heat pipe wall and a perforated screen
of thickness 6g with pore diameter 2Rg.

When the pipe temperature is decreased, freezing of the screen above the bubble and the liquid in the
perforations occurs due to vaporization of the latter. Assuming that for a large porosity the liquid tempera-
tures in the perforations and the surrounding cells of the screen are the same, we can obtain the following
equation for calculating the freezing:

[(1 —g) B g J epumdT = rdmy, (22)
PiCri - '

which reflects the fact that freezing of the screen cells and the liquid located in the perforations occurs due to
the heat of phase transformation during vaporization of the liquid. The last equation is integrated from the ini-
tial T, to the final temperature T of the pipe, and the mass of liquid in the perforations is reduced from my,

to m;. The solution in integral forms has the form

r My

AT =Ty—T = — ——In
o |1+ (1 —e) £ j m
Pilp1

@3)

The top limit of the freezing can be calculated from the assumption that in the initial state the liquid
completely fills the volume of the pore, and the meniscus at the inferface is flat. The final volume is deter-
mined by the condition that the menisci link up, which corresponds to the moment of opening of the pore, The
final mass depends on the angle of wetting 6 of the screen by liquid. In calculating the final mass one must
take into account variation in the volume of heat-transfer agent with the temperature. It can be seen from
Eq. (23) that the freezing decreases with increase of the mass heat capacity of the cell PsCps and with decrease
of the porosity €. An increase in the screen thickness leads to an increase in the initial amount of liquid in
the vapor; i.e., the ratio my/mj, falls, and AT increases. It follows from Eq. (23) that AT does not depend on
the cooling time.

In the case where (1—e)pscps/pl cpz —~ 0, Eq. (23) takes the form

AT = Ln e, (24)

Cp1 m
from which it can be seen that it is impossible to accomplish complete vaporization of the liquid.

The effect of vaporization of liquid from the perforation and drawing out of the vapor —gas bubble from
the capillary system was investigated experimentally by the authors. A general view of the test section is
given in Fig. 4. The shell 2 of the working cylinder of diameter 40 mm was transparent, which allowed the
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moment of withdrawal of the bubble to be determined visually, Freezing was controlled by passing liquid
nitrogen through the chamber1, The temperature in the working volume was measured with a copper—Constan-
tan thermocouple, mounted in jacket 3. Between the wall and the perforated screen, made of stainless steel
of thickness 6g = 0.2 mm, with surface porosity € = 0.5 and aperture radius Rg = 0,15 mm, there was a layer
of stainless woven mesh of thickness 0.2 mm. The mesh served to space the screen from the wall, and also
to locate the vapor—gas bubble 6, by means of a slot provided for this, The gravitational overheat of the bub-
ble was controlled by displacing the liquid 7 by rotating the equipment around its longitudinal axis. After the
working section was charged with liquid (ethyl alcohol) it was cooled to T = 200°K, and subsequently the gas in-
troduced into the working volume through the lid 8 was partially pumped out through the nozzle. Then the sec-
tion was brought to operating condition at T = 343°K. At the start of the experiment the screen and the mesh
were wetted by immersing them in the liquid, Then hydrostatic drying was carried out for the gap in region 6,
where the liquid rising along the slot closed off the vapor—gas during the subsequent filling. The bubble with
R = 4 mm formed and reached a state of stable equilibrium, determined byEq. (11), After holdingthis sectionin

a steady-state condition by supplying liquid nitrogen to chamber 1, the working volume was frozen until the
pore opened and the vapor—gas mixture was drawn out from the wick.

~ According to a calculation, from Eq. (23) with initial value my, corresponding to complete filling of the
perforation, and final m] corresponding to tangency of the menisci, the value of the freezing is AT = 70°K,
However, the experimentally obtained value of AT fell in the range 30-50°K, This overestimate of the theo-
retical data is evidently associated with an inexact choice of the original value of initial filling of the perfora-
tion my,.

Thus, tests have shown that the use of perforated screens, together with prior chilling, allows one to
remove vapor —gas bubbles from the arteries, which makes possible a considerable increase in the power level
of heat pipes.

NOTATION

b is the group in the gas equation of state;

B is the coefficient;

cl is the linear heat capacity;

Cps is the heat capacity of the screen;

cpl is the heat capacity of the liquid;

F is the state function of the vapor—gas bubble —liquid system;

m is the number of moles of gas in the bubble;

myg, my are the initial and final quantity of liquid in a perforation;

P is the pressure;

PyB, Pgas are the partial pressure of vapor and gas in a bubble;

Py is the excess pressure function for the vapor—~gas mixture;

Py is the pressure of the liquid surrounding the bubble;

APg is the gravitational pressure drop;

AP is the drop in pressure due to circulation of liquid;

APT is the pressure drop due to temperature overheat of the liquid;

AP; is the excess vapor pressure;

AP, is the pressure drop due to the action of capillary forces;

(BP/8T)g is the pressure gradient on the saturation curve;

Qr is the heat flux removed from a perforation by evaporation;

Rer is the radius of curvature of the liquid meniscus at the interphase boundary of the artery-vapor
channel;

R is the bubble radius;

Ry and Ry are the radii of the vapor—gas bubble in a state of stable and unstable equilibrium, respectively;

Ry and R« are the critical radii of the vapor and vapor—gas bubbles;

Rg is the radius of perforations in the screen;

R is the universal gas constant;

T is the temperature;

Ty is the initial temperature;

Ter is the temperature corresponding to the critical point on the liquid—vapor phase transformation
line;
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is the amount of cooling;

is the temperature overheat of the liquid;

are the density of the liguid and the screen material;
is the heat of vaporization;

is the surface~tension coefficient;

is the screen thickness;

is the temperature function;

is the wetting angle;

is the porosity.

The subscript * corresponds to solution of the system of equations (14).

10,

11,
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